Introduction to Dynamical Systems and Chaos (Winter, 2015)

7.8 Test » Unit 7 Test

Instructions 1

You may use any course materials, videos, websites, calculators, etc. for this test. Just don't ask another person for the answers or : answers with other people. Please do not post questions about the test on the forum. If you have questions, please send them via er chaos®acomplexityexplorer.org. Thanks.

Question 2

Can two-dimensional differential equations of this form:

3

3
exhibit chaotic behavior? Assume that $f(x, y)$ and $g(x, y)$ are smooth and continuous functions.

- Yes
- No

Question 3

3
$\frac{d y}{d t}=g(x, y, z)$
$\frac{d z}{d t}=h(x, y, z)$
Can three-dimensional differential equations of the form shown above exhibit chaos? Assume that f, g, and h are all smooth and cor

- Yes
- No

Question 4

$\frac{d x}{d t}=f(x, y)$
$\frac{d y}{d t}=g(x, y)$
Consider a set of coupled differential equations as shown above. (As usual, $f(x, y)$ and $g(x, y)$ are smooth and continuous functions.)
If solution curves $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ for two different initial conditions are plotted in phase space, is it possible for those curves to intersect ${ }^{\text {f }}$

- Yes
- No

Question 5
$x_{n+1}=1+y_{n}-a x_{n}^{2}$

Consider the Henon map, shown above. Let $\mathrm{a}=0.7$ and $\mathrm{b}=0.2$. If $x_{0}=0.3$ and $y_{0}=0.2$, what are ?
$\circ \square$
\circ
$\circ \square$
\circ

Question 6

$x_{n+1}=1+y_{n}-a x_{n}^{2}$

Consider the Henon map, shown above. Let $\mathrm{a}=0.7$ and $\mathrm{b}=0.2$. Let $x_{0}=0.3$ and $y_{0}=0.2$. What is the long-term behavior of the orbit fo। initial conditions?

- The orbit approaches a fixed point.
- The orbit approaches a cycle of period two.
- The orbit approaches a cycle of period four.
- The orbit appears to be aperiodic.

Question 7

$x_{n+1}=1+y_{n}-a x_{n}^{2}$

Consider the Henon map, shown above. Let $a=1.3$ and $b=0.2$. Let . What is the long-term behavior of the orbit for this initial conditio

- The orbit approaches a fixed point.
- The orbit approaches a cycle of period two.
- The orbit approaches a cycle of period four.
- The orbit appears to be aperiodic.

Question 8

The soutions $x(t)$ and $y(t)$ to a differential equation are shown above. What would these solutions look like if they were plotted in the plane?

。

Question 9

The solution to a differential equation is shown above in the phase plane. The direction of motion is clockwise, as indicated by the ar of the following solutions $x(t)$ and $y(t)$ would yield the phase space plot shown above?

